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Abstract. Bosonic properties of α particles such as single-α orbits and occupation numbers in Jπ = 0+,
2+, 1− and 3− states of 12C around the 3α threshold are investigated with the semi-microscopic 3α cluster
model. As in other studies, we found that the 0+

2 (2+
2 ) state has dilute-3α-condensate–like structure in

which the α particle is occupied in the single S (D) orbit with about 70% (80%) probability. The radial
behaviors of the single-α orbits as well as the occupation numbers are discussed in detail in comparison
with those for the 0+

1 and 2+
1 states together with the 1−1 and 3−1 states.

PACS. 21.10.Dr Binding energies and masses – 21.10.Gv Mass and neutron distributions – 21.60.Gx
Cluster models – 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural
properties

1 Introduction

Four-nucleon correlations of the α-cluster type play
an important role in nuclei. The microscopic α-cluster
model [1–4] has succeeded in describing the structure of
many states in light nuclei, in particular, around the
threshold energy of breakup into constituent clusters. As
for 12C, detailed analyses were made by several authors
with the microscopic 3α cluster model about 25 years ago.
The 3α GCM (generator coordinate method) [5] and 3α
RGM (resonating group method) [6] calculations showed
that the second 0+ state of 12C (Ex = 7.65 MeV), lo-
cated at E3α = 0.38 MeV above the 3α threshold, has a
loosely coupled 3α structure, although the ground state is
a shell-model–like compact state. On the other hand, spe-
cial attention has been paid to an α-type condensation in
symmetric nuclear matter, analogue to the Bose-Einstein
condensation for finite number of dilute bosonic atoms
such as 87Rb or 23Na at very low temperature where all
atoms occupy the lowest S orbit [7]. Several authors [8,9]
showed the possibility of such α-particle condensation in
low-density nuclear matter, although the ordinary pair-
ing correlation can prevail at higher densities. This result
suggests that dilute α condensate states in finite nuclear
system may exist in excited states as a weakly interacting
gas of α particles.
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Recently, a new α-cluster wave function was proposed
which is of the Nα-particle condensate type [10]

|ΦNα〉 = (C+
α )

N |vac〉, (1)

〈r1 · · · rN |ΦNα〉 ∝
A
{

e−ν(r
2
1+···+r

2
N)φ(α1) · · ·φ(αN )

}

, (2)

where C+
α is the α-particle creation operator, φ(α) denotes

the internal wave function of the α cluster, ri is the center-
of-mass coordinate of the i-th α cluster, and A presents
the antisymmetrizer among the nucleons belonging to dif-
ferent α clusters. The important characteristic of the wave
function is that the center-of-mass motion of each α clus-
ter is of S-wave type. Applications of the condensate-type
wave function to 12C and 16O [10] indicated that the sec-
ond 0+ state of 12C (Ex = 7.65 MeV) and fifth 0

+ state of
16O (Ex = 14.0 MeV), around the 3α and 4α threshold,
respectively, are conjectured to be dilute Nα condensate
states, which are quite similar to the Bose-Einstein con-
densation of bosonic atoms at very low temperature. The
calculated nuclear radii for both of those states are about
4 fm, significantly larger than that for the ground state
(about 2.5–2.7 fm). As for 12C, a detailed analysis with
a deformed alpha condensate wave function, slightly dif-
ferent from the spherical one in eq. (2), was performed to
investigate the structure of the 0+1 and 0

+
2 states [11]. It

was found that each of the 0+2 wave functions obtained by
the 3α GCM and RGM calculations has a large squared
overlap value of more than 90% with the single 3α con-
densate wave function.
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The above-mentioned results for 12C and 16O lead us
to the further intriguing issue that dilute α-cluster states
with Jπ = 0+ near the Nα threshold may exist in other
heavier 4N self-conjugate nuclei. The Gross-Pitaevskii
equation approach [12] is useful to explore such dilute
multi-α systems, because this equation [13], based on
mean-field theory, has succeeded in describing the struc-
ture of the Bose-Einstein condensation for dilute neutral
atomic systems, for example, 87Rb or 23Na, at very low
temperature, trapped by an external magnetic field [7].
The present authors [12] applied the Gross-Pitaevskii
equation to self-conjugate 4N nuclei. They found that
1) there exists a critical number of α bosons that the di-
lute Nα system can sustain as a self-bound nucleus, and
2) the Coulomb potential barrier plays an important role
to confine such dilute Nα-particle condensate states.

It is interesting to explore also the possibility of the
α condensate states with non-zero angular momentum in
12C. The old theoretical calculations based on the micro-
scopic 3α cluster model [4–6] suggested the existence of
a 2+2 state of

12C at around E3α ∼ 3 MeV above the 3α
threshold, the structure of which is similar to the 0+2 state
except for the angular momentum. Quite recently the 2+2
state was observed at E3α = 2.6±0.3 MeV with the alpha
decay width Γα = 1.0± 0.3 MeV [14]. The α-condensate–
type wave function with axial deformation [15] was ap-
plied to study the structure of the 2+2 state with help of
the method of ACCC (analytic continuation in the cou-
pling constant) [16]. They found that the 2+2 state has a
large overlap with the single condensate wave function of
3α gas-like structure, the squared value of which amounts
to about 88%. This result implies that the 2+2 state has a
similar structure as the 0+2 state, namely, an excited state
of the dilute 3α condensation.

Here, it is an intriguing problem to discuss whether
the 0+2 and 2

+
2 states of

12C are ideal dilute α condensates
or not. The condensate-type α-cluster wave function in
eq. (2) has succeeded in describing the 0+2 state of

12C.
This result, however, does not necessarily mean that the
0+2 state of

12C is an ideal α condensate state. If the 0+2
state of 12C is an ideal dilute α condensate, the single
α-particle orbit in the state should be of the zero-node
long-ranged S-wave type with an occupation probability
of 100%, as suggested from the Gross-Pitaevskii equation
approach [12]. The antisymmetrizer A in eq. (2) gener-
ally perturbs the single α motion in the nucleus, and one
should remember that the condensate-type wave function
can also describe the shell-model–like compact structure of
the ground state of 12C. The effect of the antisymmetrizer
should have a close relation to the rms radius of the nu-
cleus or the distance between 2α clusters in a nucleus.
The ideal 3α condensate state is expected to be realized
if the distance between two arbitrary α clusters is large
enough so that the effect of the antisymmetrizer can be
neglected. The calculated nuclear radius for the 0+2 state
of 12C, about 4 fm [10], suggests that the action of the
antisymmetrizer is weakened significantly in that state. In
order to give more decisive theoretical evidence that the
0+2 state of

12C as well as the 2+2 state has dilute 3α con-

densation structure, it is needed to study quantitatively
the bosonic properties such as single α-particle orbits and
corresponding occupation probabilities, starting from the
microscopic wave function.
The first attempt to derive the α-boson properties for

0+ states in 12C from a microscopic model was performed
in ref. [17], where the 3α RGM equation was solved in
terms of the correlated Gaussian basis with the stochas-
tic variational method. Although the authors formulated a
derivation of the 3α boson wave function starting from the
microscopic 3α wave function, the α bosonic properties of
12C were studied not with the 3α bosonic wave function
but with the normalized spectroscopic amplitude, because
the derivation of the 3α boson wave function is numeri-
cally difficult due to the non-local properties of the norm
kernel. Although the normalized spectroscopic amplitude
seems to be a good approximation for the boson wave
function in the region where the effect of the antisym-
metrizer is negligible, the approximation becomes worse
when the spatial overlap of the 3α clusters becomes larger.
It is desirable to investigate quantitatively how good that
approximation is for the 0+2 state within their framework.
The purposes in the present paper are twofold. First,

we study the bosonic properties such as single α-particle
orbits and their occupation probabilities for the 0+ and 2+

states in 12C with direct use of the wave function obtained
by the 3α OCM (orthogonality condition model) [18]. The
OCM is a semi-microscopic model and a simple version
of the RGM, taking into account properly the antisym-
metrization among nucleons, which successfully describes
the structure of 12C [4,19–23]. The second purpose is to
explore the possibility of the dilute 3α condensation with
negative parity within the present framework. The 3−1 (1

−
1 )

state of 12C at E3α = 2.37 (3.57) MeV above the 3α
threshold appears at the same energy region as that for the
0+2 (Ex = 0.38 MeV) and 2

+
2 (2.6 MeV) states. According

to the old theoretical study based on the 3α GCM and
RGM calculations [5,6], the nuclear radius of the 3− state
is intermediate between a compact shell-model–like state
(0+1 ) and a loosely coupled 3α cluster state (0

+
2 ), while the

1− state has a radius only a little smaller than that of the
0+2 state. Thus, it is quite interesting to study the bosonic
properties for the negative-parity states, as well.
In sect. 2, we formulate the Nα OCM equation with

emphasis on a close relation with the equation of motion of
Nα bosons, the wave function of which is mapped from the
microscopic Nα wave function within the framework of
the resonating group method (RGM). The Nα OCM wave
function has bosonic properties. The 3α OCM equation is
solved properly with modern numerical techniques. The
calculated single α-particle orbits and occupation proba-
bilities in 12C are discussed in sect. 3. Finally, we give the
summary in sect. 4.

2 Formulation

The Nα OCM equation is given as an approximation of
the equation of motion of the Nα bosons, the wave func-
tion of which is mapped from the microscopic Nα wave
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function within the framework of the resonating group
method (RGM). We first will briefly see a relationship be-
tween the equation of motion of the Nα boson and the
Nα OCM equation, and then, formulate the evaluation of
the single-α orbits and occupation numbers from the Nα
OCM wave function together with other physical quan-
tities. Finally, we give an outline of how to solve the 3α
OCM equation for 12C with a phenomenological α-α po-
tential.

2.1 Nα orthogonality condition model (OCM) with
bosonic properties

An Nα boson wave function Φ
(B)
J corresponding to the

microscopic (fermionic) Nα cluster model wave function
is provided within the RGM framework [24,17],

Φ
(B)
J (r) = N 1/2χJ =

∫

dr′N1/2(r, r′)χJ(r
′), (3)

where χJ represents the relative wave function with
a set of the relative (Jacobi) coordinates, r =
{r1, r2, · · · , rN−1}, with respect to the c.m. of α clus-
ters, and J denotes the total angular momentum of the
Nα system. The square-root matrix N 1/2(r, r′) is rele-
vant to the norm kernel of the Nα RGM wave function,

Ψ (F )(a) = A
{

∏N
i=1 φ

(int)
αi

∏N−1
j=1 δ(rj − aj)

}

, where φ
(int)
α

denotes the intrinsic wave function of the α particle with
the simple (0s)4 shell model configuration (A is the anti-
symmetrization operator among 4N nucleons). It is noted

that Φ
(B)
J (r) has only the Jacobi coordinates of the Nα

system and the internal coordinates in the α cluster are
integrated out completely. The equation of motion for

Φ
(B)
J (r) is given as

(

N−1/2HN−1/2 − E
)

Φ
(B)
J = 0, (4)

where H denotes the Hamiltonian kernel of the Nα RGM
wave function Ψ (F ), and N−1/2HN−1/2 can be inter-
preted as the Nα boson Hamiltonian.
The boson wave function has the following properties:

1) Φ
(B)
J is totally symmetric for any 2α-particle exchange,

2) Φ
(B)
J satisfies the equation motion in eq. (4), and 3) Φ

(B)
J

is orthogonal to the Pauli-forbidden state uF (r), which

satisfies the condition A
{

∏N
i=1 φ

(int)
αi uF

}

= 0. In order

to obtain the boson wave function, we need to solve the
equation of motion of the bosons in eq. (4). Solving the
boson equation, however, is difficult in general even for
the 3α case. Thus, it is requested to use more feasible
frameworks for the study of the bosonic properties and
the amount of α condensation for the Nα system. In the
present study, we take the orthogonality condition model
(OCM) [18] as one of the more feasible frameworks. The
OCM scheme, which is an approximation to the RGM, is
known to describe nicely the structure of low-lying states
in light nuclei [4,18–20,23]. The essential properties of the

Nα boson wave function Φ
(B)
J , as mentioned above, can

be taken into account in OCM in a simple manner. We
will demonstrate this briefly.
In OCM, the α cluster is treated as a point-like par-

ticle. We approximate the Nα boson Hamiltonian (non-
local) in eq. (4) by an effective (local) one H (OCM),

N−1/2HN−1/2 ∼ H(OCM) , (5)

H(OCM) ≡
N
∑

i=1

Ti − Tcm +
N
∑

i<j=1

V eff
2α (i, j)

+

N
∑

i<j<k=1

V eff
3α (i, j, k), (6)

where Ti denotes the kinetic energy of the i-th α cluster,
and the center-of-mass kinetic energy Tcm is subtracted
from the Hamiltonian. The effective 2α and 3α poten-
tials are presented as V eff

2α and V eff
3α , respectively. Then,

the equation of the relative motions for the Nα particles
with H(OCM), called the OCM equation, is expressed as

{

H(OCM) − E
}

ΦJ = 0, (7)

〈uF | ΦJ〉 = 0, (8)

where uF denotes the Pauli-forbidden state of the Nα
system as mentioned above. The bosonic property of the
wave function ΦJ can be taken into account by symmetriz-
ing the wave function with respect to any 2α-particle ex-
change,

ΦJ = SΦJ(1, 2, · · · , N), (9)

where S denotes the symmetrization operator, S =
(1/
√
N !)

∑

P P, where the sum runs over all permutations
P for the Nα particles. It is noted that the complete over-
lapped state of the 3α particles is forbidden within the
present framework because of the Pauli-blocking effect in
eq. (8), although we take into account the bosonic statis-
tics for the constituent α particles. In the next section, we
will demonstrate i) how to solve the OCM equation and
ii) what kind of effective α-α potential we should choose
in H(OCM) for the 3α case of 12C.
Here, it is useful to define various quantities charac-

terizing the structure of the Nα system with use of the
Nα boson wave function ΦJ obtained by solving the OCM
equation in eqs. (7) and (8). The single α-particle density
is defined as

ρ(r) = 〈ΦJ |
N
∑

i=1

δ(r − r(cm)i ) | ΦJ〉, (10)

where r
(cm)
i is the coordinate of the i-th α particle mea-

sured from the center-of-mass coordinate of the total sys-
tem. The nuclear root-mean-square radius is given as

√

〈r2N 〉 =
√

〈r2α〉+ 1.712, (11)

√

〈r2α〉 =
∫

drr2ρ(r), (12)
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where we take into account the finite-size effect of the α
particle. The correlation functions with respect to the α-α
relative coordinate rαα as well as the relative coordinate
between one of the α particles and the remaining (N−1)α
system rα-(N−1)α are given as

fαα(r) = 〈ΦJ | δ(r − rαα) | ΦJ 〉, (13)

fα-(N−1)α(r) = 〈ΦJ | δ(r − rα-(N−1)α) | ΦJ〉, (14)

where the way of choosing the coordinates, rαα and
rα-(N−1)α, is arbitrary in the set of Jacobi coordinates of
the Nα particles because of the totally symmetrization for
ΦJ . The root-mean-square (rms) distances with respect to
rαα and rα−(N−1)α are, respectively, given by

√

〈r2αα〉 =
[

〈ΦJ | r2αα | ΦJ〉
]1/2

, (15)
√

〈r2α-(N−1)α〉 =
[

〈ΦJ | r2α-(N−1)α | ΦJ〉
]1/2

. (16)

The reduced width amplitude for the α-(N − 1)α part is
defined as

Y`LJ(r) = r × 〈[YL(r)φ` ((N − 1)α)]J | ΦJ〉 , (17)

where r denotes the relative coordinate between the α
particle and the (N −1)α nucleus, and φ` ((N − 1)α) rep-
resents the wave function of the (N−1)α nucleus with to-
tal angular momentum ` which is obtained by solving the
OCM equation for the (N−1)α system. The integration in
eq. (17) is done over all of the relative (Jacobi) coordinates
for the Nα system except for the radial part of r.
In order to discuss the bosonic properties such as the

degree of α condensation in a nucleus, it is needed to ex-
tract information on the single α-particle orbits and their
occupation probabilities in the nucleus from the total wave
function ΦJ . The one-particle density matrix for the Nα
system is very useful for this [17]. Defining the one-particle
density operator as

D(r, r′) =
N
∑

i=1

| δ(r(cm)i − r′)〉〈δ(r(cm)i − r) |, (18)

then, the single α-particle density matrix is given as

ρ(r, r′) = 〈ΦJ | D(r, r′) | ΦJ〉, (19)

= N×〈ΦJ | δ(r(cm)1 − r′)〉〈δ(r(cm)1 − r) | ΦJ〉,
(20)

where r
(cm)
i is the same as that in eq. (10). It is noted

that the diagonal matrix element reduces to the single α-
particle density in eq. (10): ρ(r, r′ = r) = ρ(r). The single
α-particle orbit and its occupation number in the nucleus
can be evaluated by solving the eigenvalue equation of the
one-particle density matrix

∫

dr′ρ(r, r′)ϕµ(r
′) = µϕµ(r), (21)

where the eigenvalue µ presents the occupation number.
The eigenfunction ϕµ denotes the single-α orbital wave

function in a nucleus with the argument of the intrinsic

coordinate (r
(cm)
α ) of an arbitrary α particle in a nucleus

measured from the center-of-mass coordinate. The ratio
µ/N represents the occupation probability of an α particle
in the orbit ϕµ. The spectrum of the occupation probabil-
ities offers important information about the occupancy of
the single α-particle orbit in a nucleus. If each of the Nα
particles in an Nα-boson state is occupied by only one
orbit, the occupation probability for this orbit becomes
100%.
The 8Be (2α) system is a good example to demonstrate

the characteristic of the single-α orbital wave function.
From the definition of eqs. (20) and (21), the Lα-wave
single-α orbit in the 8Be(Jπ) state corresponds to the rel-
ative wave function (which is obtained by solving the 2α
OCM equation with J (= Lα) in eqs. (7) and (8)), scal-
ing to 1/2 with respect to the relative coordinate between
the 2α clusters. Then, the occupation probability becomes
exactly (mathematically) 100% for any Lα-value.
The radial behavior of the Lα-wave single-α orbit,

ϕµ(r
(cm)
α ), in eq. (21) generally has a close rela-

tionship with that of the reduced width amplitude,
Y`LJ (rα-(N−1)α), in eq. (17). This is due to the fact that
both represent the behavior of the single α-particle mo-
tion in a nucleus in which all degrees of freedom of the

other α particles are integrated out, and r
(cm)
α is given as

r
(cm)
α = N−1

N × rα-(N−1)α.
The momentum distribution of the single α particle

is also helpful for the study of α condensation in a nu-
cleus [17]. It is defined as a double Fourier transformation
of the one-particle density matrix

ρ(k) =

∫

dr′dr
eik·r

′

(2π)3/2
ρ(r, r′)

e−ik·r

(2π)3/2
, (22)

∫

dkρ(k) = 1. (23)

It is reminded that ρ(k) would have a δ-function–like peak
around k = 0 for an ideal dilute condensed state in homo-
geneous infinite matter.

2.2 3α OCM for 12C

In the previous section, we outlined the Nα orthogonality
condition model (OCM) and discussed how to extract the
properties and the amount of α condensation in the Nα
system. Here, we will apply the OCM framework to the
3α system of 12C.
The total wave function of 12C (the total angular mo-

mentum J) within the frame of the 3α OCM is presented
as

ΦJ(
12C) = Φ

(12,3)
J + Φ

(23,1)
J + Φ

(31,2)
J , (24)

where Φ
(12,3)
J denotes the relative wave function of the

3α system with the Jacobi-coordinate system shown in
fig. 1(a), and other notations are self-explanatory. In the
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(a) (b) (c)

Fig. 1. Jacobian-coordinate systems for the 3α model of 12C.
The three Jacobian coordinates, (a), (b) and (c), correspond,
respectively, to the 3α relative wave functions, Φ3α

J (12, 3),
Φ3α
J (23, 1) and Φ3α

J (31, 2) in eq. (24).

present study, ΦJ(
12C) is expanded in terms of the Gaus-

sian basis [25],

ΦJ(
12C) =

∑

c

∑

ν,µ

Ac(ν, µ)Φ
3α
c (ν, µ), (25)

Φ3αc (ν, µ) = Φ(12,3)c (ν, µ) + Φ(23,1)c (ν, µ) + Φ(31,2)c (ν, µ),

(26)

Φ(ij,k)c (ν, µ) = [ϕ`(rij , ν)ϕL(rk, µ)]J , (27)

ϕ`(r, ν) = N`(ν)r
` exp(−νr2)Y`(r̂), (28)

where N` is the normalization factor, and rij (rk) denotes
the relative coordinate between the i- and j-th α parti-
cle (the k-th α particle and the center-of-mass coordinate
of the i-th and j-th α particle). The angular momentum
channel is presented as c = (`, L)J , where ` (L) denotes
the relative orbital angular momentum between 2α clus-
ters (the center of mass for the 2α clusters and the third
α). The Gaussian parameter ν is taken to be of geometri-
cal progression,

νn = 1/b
2
n, bn = bmina

n−1, n = 1 ∼ nmax.
(29)

It is noted that the prescription is found to be very use-
ful in optimizing the ranges with a small number of free
parameters with high accuracy [25].
The total Hamiltonian for the 3α system is presented

as

H =
3
∑

i=1

Ti − Tcm +

3
∑

i<j=1

[

V2α(rij) + V Coul
2α (rij)

]

+V3α(r12, r23, r31) + VPauli, (30)

where Ti, V2α and V3α stand for the kinetic energy opera-
tor for the i-th α particle, phenomenological 2α and 3α po-
tentials, respectively, and V Coul

2α is the Coulomb potential
between 2α particles. The center-of-mass kinetic energy
is subtracted from the Hamiltonian. The Pauli-blocking
operator VPauli [26] is represented as

VPauli = lim
λ→∞

λÔPauli, (31)

ÔPauli =
∑

2n+`<4,`=even

∑

(ij)=(12),(23),(31)

|un`(rij〉〈un`(rij)| , (32)

which removes the Pauli-forbidden states, u00, u10 and
u20, between any two α particles from the 3α model space.
The Gaussian size parameter of the nucleon (0s) orbit in
the α cluster is taken to be bN = 1.358 fm, which repro-
duces the size of the α particle in free space. In the present
study, we take the harmonic-oscillator wave functions as
the Pauli-forbidden states. The eigenenergy E of 12C and
coefficients Ac in eq. (25) are obtained in terms of the
variational principle,

δ [〈ΦJ | H − E | ΦJ〉] = 0. (33)

We use an effective 2α potential which reproduces the
observed α-α scattering phase shifts (S, D and G waves)
and the resonant ground-state energy within the 2α OCM
framework. The effective 2α potential and Coulomb po-
tential, V2α and V

Coul
2α , are constructed with the folding

procedure, where we fold the modified Hasegawa-Nagata
effective NN interaction (MHN) and the pp Coulomb po-
tential with the α-cluster density. Also the strength of the
second-range triplet-odd part in MHN is modified so as to
reproduce the 2α scattering phase shifts.
Only using the effective 2α potential leads to a sig-

nificant overbinding energy for the ground state of 12C
within the frame of the 3α OCM. Thus, we introduce an
effective, repulsive, 3α potential, V3α, in addition to the
2α potential,

V3α = V0 exp
[

−β
(

r
2
12 + r

2
23 + r

2
31

)]

, (34)

where rij denotes the relative coordinate between the
i- and j-th α particles, and V0 and β are taken to be
V0 = 87.5 MeV and β = 0.15 fm−2. Including the 3α
potential, the energy of the ground state of 12C is repro-
duced with respect to the 3α threshold, together with the
nuclear radius (see sect. 3).
Single-α orbits and corresponding occupation prob-

abilities for 0+, 2+, 1−, and 3− states of 12C are in-
vestigated by solving the eigenvalue equation of the sin-
gle α-particle density matrix in eqs. (20) and (21) (see
sect. 2.2). They will lead to a deep understanding about
the structure of 12C.
In the present investigation, we make a further struc-

ture study for the 0+ states of 12C, because they have very
intriguing features. According to ref. [10], the 0+1 state has
a compact shell-model–like state, while the 0+2 one is con-
jectured to have a dilute 3α condensate structure, the nu-
clear radius of which is 4.3 fm, much larger than that of
the ground 0+1 state (2.48 fm). Thus, it is interesting to
see in detail the structure change of the 0+ state of 12C by
taking the nuclear radius as a parameter. We investigate
the dependence of the occupation probabilities and radial
behaviors of the single α-particle orbits in the 0+ state on
its rms radius within the 3α OCM framework. The results
will give us helpful understanding about the structure of
12C. The procedure is formulated hereafter.
First, we consider a Pauli-principle–respecting 3α

OCM basis wave function. For the purpose, the eigenvalue
problem for the Pauli operator in eq. (32) is solved to ob-
tain the Pauli-forbidden state in the 3α OCM model space

ÔPauli|G3α
P 〉 = λP |G3α

P 〉, (35)
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where λP denotes the eigenvalue for the eigenfunction
|G3α

P 〉. The Pauli operator, then, is expressed as

ÔPauli =
∑

P

|G3α
P 〉λP 〈G3α

P |. (36)

If λP is non-zero, its eigenfunction corresponds to the
Pauli-forbidden state. In the present study, the eigen-
value problem is solved with use of the 3α OCM basis in
eq. (26). Then, the Pauli-principle–respecting OCM basis
wave function is given by

Φ̃3αc (ν, µ) = Nc(ν, µ)

[

Φ3αc (ν, µ)

−
∑

λP 6=0

|G3α
P 〉〈G3α

P |Φ3αc (ν, µ)〉
]

, (37)

where Nc denotes the normalization factor with the angu-
lar momentum channel c = (`, L)J , and Φ

3α
c (ν, µ) is given

in eq. (26). The energy of the 3α system, then, is given by

E3α(ν, µ) =
〈

Φ̃3αc (ν, µ)|H̃|Φ̃3αc (ν, µ)
〉

. (38)

where H̃ denotes the total Hamiltonian of the 3α system
in which we subtract the Pauli-blocking operator VPauli
from the 3α OCM Hamiltonian H in eq. (30). Applying
the wave function in eq. (37) to eqs. (20) and (21), we
can study the dependence of the occupancy of the single
α-particle orbits in the 0+ state of 12C on its nuclear ra-
dius by choosing the parameter values, ν and µ, so as to
reproduce a given nuclear radius. In the present study, we
consider only the case of the equilateral triangle configu-
ration of the 3α clusters (see sect. 3.5).

3 Results and discussion

3.1 0+

1 and 0+

2 states

Table 1 presents the results for the energy, measured from
the 3α threshold, and nuclear radii for the ground (0+1 )
and excited states (0+2 ) of

12C. The energy for the ground
state is reproduced well, and the corresponding nuclear ra-
dius, 2.44 fm, is in good agreement with the experimental
charge radius (2.4829 ± 0.019 fm) with an error of about
2%. On the other hand, the rms distance between 2α clus-
ters in the 0+1 state is

√

〈r2〉αα = 3.02 fm (see table 1),
which is larger than that between the center of mass of the
2α clusters and the third α cluster,

√

〈r2〉α-2α = 2.61 fm.
Then, the square of the ratio,

[

√

〈r2〉α-2α/
√

〈r2〉αα
]2

, is

about 3/4. The results mean that the ground state has
an equilateral-triangle–like intrinsic shape. Figure 2 shows
the density distribution of the α particle for the 0+1 state of
12C. We see a prominent peak at r ∼ 2 fm, which demon-
strates clearly the shell-model–like compact structure of
the ground state of 12C.

Table 1. Calculated energies (E3α) and nuclear radii (
√

〈r2
N
〉)

for the 0+, 2+, 3− and 1− states of 12C together with the α-α
and α-2α rms distances (

√

〈r2
αα〉 and

√

〈r2
α-2α〉). The energy

E3α is the one measured from the 3α threshold. The values
in parenthesis denote the experimental ones. All energies and
nuclear radii (rms distances) are given in units of MeV and fm,
respectively.

Jπ Ecal
3α (Eexp

3α )
√

〈r2
N
〉

√

〈r2
αα〉

√

〈r2
α-2α〉

0+
1 −7.27 (−7.27) 2.44 3.02 2.61

0+
2 0.85 (0.38) 4.31 6.84 5.93

2+
1 −5.28 (−2.83) 2.45 2.94 2.55

2+
2 2.43(a) (2.6) 6.12(a) 10.2 8.80

3−1 1.52 (2.37) 2.96 4.10 3.56

1−1 3.11 (3.57) 3.32 4.87 4.23

(a) According to the complex-scaling method, the resonant energy and
width of the 2+

2
state are E3α = 2.3 MeV and Γ = 1.0 MeV,

respectively, with
√

〈r2
N
〉 = 4.3 fm. See text.
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Fig. 2. Density distribution of the α particle for the 0+
1 (solid

line) and 0+
2 (dotted line) states.

As for the 0+2 state, the energy measured from the 3α
threshold is E3α = 0.86 MeV (Ex = 8.13 MeV), which
agrees well with the experimental data Eexp

3α = 0.38 MeV
(Eexp

x = 7.65 MeV). The calculated nuclear radius for the
0+2 state is as large as 4.31 fm (see table 1). This means
that the state has a dilute 3α structure, although our nu-
clear radius is a little larger than that in ref. [10]. The
density distribution of the α particle for the 0+2 state is il-
lustrated in fig. 2. In comparison with that for the ground
state, we can easily recognize the dilute structure of the
0+2 state, which is in contrast with the compact structure
of the ground state.

The difference between the structures of the 0+1 and 0
+
2

states can be also seen in the radial behavior of the correla-
tion functions, fαα and fα-2α, with respect to the α-α and
α-2α relative coordinates, respectively, of eqs. (13) and
(14). They are illustrated in fig. 3. Reflecting the compact
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Fig. 3. Correlation functions, (a) fαα and (b) fα-2α, for the
0+
1 (solid line) and 0+

2 (dotted line) states.

structure of the 0+1 state, both fαα and fα-2α have promi-
nent peaks at r ∼ 2.6 fm and 2.5 fm, respectively, and
extend to r ∼ 5 fm, while those for the 0+2 state show
bump structures with peaks at r ∼ 4 fm and r ∼ 5 fm,
respectively, and have a long tail up to r ∼ 15 fm.
It is instructive to study the single α-particle orbits

(eigenfunctions) and occupation numbers (eigenvalues) of
the one-body density matrix in eq. (20). The results of the
diagonalization of the latter are shown in table 2 together
with the occupation probability defined as the occupation
number divided by the number of α particles. As for the
ground state, the occupation probabilities spread out over
S, D and G waves, but they are concentrated to the first
orbits, S1, D1 and G1 orbits, respectively, where Lk de-
notes the k-th orbit for the L-wave. The occupation proba-
bilities are about 30% for all orbits. This result is expected
from the fact that the ground-state wave function is of nu-
clear SU(3)-like character, SU(3)[f ](λµ)Jπ = [444](04)0+
with quanta Q = 8, where the SU(3) bases with Q < 8
correspond to the Pauli-forbidden states [24]. Since the
SU(3)[444](04)0+ state is the eigenfunction of the 3α
RGM norm kernel, it can be regarded as the 3α boson

Table 2. Occupation numbers of the k-th α orbits with S, D
and G waves for the 0+ and 2+ states of 12C obtained by diag-
onalizing the one-body density matrix in eq. (20). The values
in parenthesis denote the occupation probabilities.

Jπ k S D G

0+
1 1 1.05 (35.0%) 1.06 (35.3%) 0.82 (27.3%)

2 0.01 (0.3%) 0.01 (0.0%) 0.00 (0.0%)

3 0.00 (0.0%) 0.01 (0.0%) 0.00 (0.0%)

· · · · · · · · · · · ·

total 1.07 (35.6%) 1.07 (35.6%) 0.82 (27.3%)

0+
2 1 2.16 (72.0%) 0.19 (6.3%) 0.08 (2.7%)

2 0.20 (6.7%) 0.06 (2.0%) 0.06 (2.0%)

3 0.02 (0.7%) 0.02 (0.7%) 0.01 (0.3%)

· · · · · · · · · · · ·

total 2.38 (79.3%) 0.29 (1.0%) 0.16 (5.3%)

2+
1 1 0.25 (8.5%) 1.69 (56.2%) 1.00 (33.3%)

2 0.00 (0.0%) 0.02 (0.7%) 0.00 (0.0%)

3 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)

· · · · · · · · · · · ·

total 0.26 (8.7%) 1.71 (57.0%) 1.00 (33.3%)

2+
2 1 0.31 (10.3%) 2.50 (83.3%) 0.05 (1.7%)

2 0.02 (0.7%) 0.03 (1.0%) 0.00 (0.0%)

3 0.00 (0.0%) 0.01 (0.3%) 0.00 (0.0%)

· · · · · · · · · · · ·

total 0.33 (11.0%) 2.56 (85.3%) 0.06 (2.0%)

wave function with Q = 8. The state is described as

|[444](04)〉0+ =
∑

n`NL

anlNL|(n`)(NL)〉,

=

√

64

225
|2s2S〉 −

√

80

225
|1d1D)〉+

√

81

225
|0g0G〉, (39)

where |(n`)(NL)〉 presents the basis function
|un`(r2α)uNL(rα-2α)〉 with 2n + ` + 2N + L = 8,
and un` (uNL) denotes the harmonic-oscillator wave func-
tion with the number of nodes n (N) and orbital angular
momentum ` (L) referring to the coordinate vector r2α
(rα-2α) between 2α clusters (between the center of mass
for the 2α clusters and the third α cluster). Let us define
Lα as the orbital angular momentum of a single-α orbit.
Then, L in eq. (39) corresponds to Lα, because Lα is
defined as the orbital angular momentum with respect to

r
(cm)
α , coordinate vector of the α particle measured from
the center-of-mass coordinate of 12C (see eq. (10)), which

is parallel to rα-2α (r
(cm)
α = 2

3rα-2α). From the definition
of the one-body density matrix in eq. (20), the single-α
orbits and occupation probabilities for the SU(3) state
in eq. (39) are given as follows: 64/255 ∼ 28% for the S
orbit, 80/225 ∼ 36% for the D orbit, and 81/225 ∼ 36%
for the G orbit. Thus, we can understand the reason why
the S1, D1 and G1 orbits in table 2 have about 30%
occupation probabilities each.
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Fig. 4. Radial parts of the single-α orbits, (a) S1 (solid
line), D1 (dashed line) and G1 (dotted line), in the 0+

1 state,
and (b) the S1 (solid line) orbit in the 0+

2 state and S-wave
Gaussian function (dotted line), rϕ0s, with the size parameter
a = 0.038 fm−2 (see text). Note that all of the radial parts in
figures are multiplied by r.

Figure 4(a) demonstrates the radial parts for the S1,
D1 andG1 orbits, the number of nodes of which is two, one
and zero, respectively. Reflecting the SU(3) character, the
radial behaviors of the three orbits are similar to those of
the harmonic-oscillator wave functions (uNL) with Q = 4,
u02, u21 and u40, respectively, where N (L) denotes the
number of nodes (orbital angular momentum). We see that
the radial parts of the single α-particle orbits oscillate
strongly in the inside region (r < 4 fm). This is due to the
important Pauli-blocking effect for the ground state with
the compact shell-model–like structure. The large oscilla-
tion can also be seen in the reduced width amplitude of the
α+ 8Be(0+) channel for the ground state shown in fig. 5.

Concerning the 0+2 state, the occupation probabilities
are shown in table 2. We see a strong concentration on
a single orbit: the occupation probability of the S1 orbit
is largest, amounting to about 70%, and those for other
orbits are very small. This means that each of the three α
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Fig. 5. Reduced width amplitude of the α+ 8Be(0+) channel
for the 0+

1 state.

particles in the 0+2 state is in the S1 orbit with occupation
probability as large as about 70%. The radial behavior of
the S1 orbit is illustrated with the solid line in fig. 4(b).
We see no nodal behavior but small oscillations in the in-
ner region (r < 4 fm) and a long tail up to r ∼ 10 fm.
For reference, the radial behavior of the S-wave Gaussian
function, ϕ0s(r) = N0s(a) exp(−ar2), is drawn with the
dashed line in fig. 4(b), where the size parameter a is cho-
sen to be 0.038 fm−2, and N0s(a) denotes the normaliza-
tion factor. The radial behavior of the S1 orbit is similar
to that of the S-wave Gaussian function, in particular, in
the outer region (r > 4 fm), whereas a slight oscillation
of the former around the latter can be seen in the inner
region (r < 4 fm).
The small oscillation of the S1 orbit in the inner re-

gion can also be seen in the reduced width amplitude of
the 0+2 state for the α+

8Be(0+) channel in fig. 6(a). In
order to study the origin of the small oscillation, we show
in fig. 6(b) the results of the reduced width amplitudes of
the 0+2 state for the α+

8Be(0+) channel, fixing the dis-
tance between the 2α clusters in 8Be to rαα = 0.5, 2.5, 4.5
and 6.5 fm. In the case of rαα < 4 fm, we see the nodal be-
havior with the large oscillation in the inner region, com-
ing from the strong Pauli-blocking effect among the 3α
clusters, while the nodal behavior is disappearing and the
oscillations are getting weaker for the larger rαα (≥ 4 fm),
reflecting the weaker Pauli-blocking effect. Thus, the small
oscillations in the radial behavior of the S1 orbit is evi-
dence for the weak Pauli-blocking effect for the 0+2 state
with the dilute structure.
The momentum distributions of the α particles, ρ(k)

and k2 × ρ(k), are shown for the 0+1 and 0+2 states in
fig. 7. Reflecting the dilute structure of the 0+2 state, we
see a strong concentration of the momentum distribution
in the k < 1 fm−1 region, and the behavior of ρ(k) is
of the δ-function type, similar to the momentum distri-
bution of the dilute neutral atomic condensate states at
very low temperature trapped by the external magnetic
field [7]. On the other hand, the ground state has higher
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Fig. 6. (a) Reduced width amplitude of the α+ 8Be(0+) chan-
nel for the 0+

2 state, and (b) reduced width amplitudes in
which the distance between the 2α clusters in 8Be is fixed to
rαα = 0.5, 2.5, 4.5 and 6.5 fm.

momentum component up to k ∼ 6 fm−1 as seen from the
behavior of k2×ρ(k) reflecting the compact structure. The
above results for the radial behavior of the S1 orbit, oc-
cupation probability and momentum distribution for the
0+2 state leads us to conclude that this state is similar to
an ideal dilute 3α condensate with as much as about 70%
occupation probability.

Let us make some remarks on the calculated energy
(E3α = 0.85 MeV) and wave function of the 0+2 state.
They were evaluated under the bound-state approxima-
tion in the present study (see sect. 2). The quite small
experimental width for 0+2 (Γ = 8.5 eV) [27] means that
the bound-state approximation is very good to describe
the wave function. The complex-scaling method [28] is
powerful to search for resonant states and calculate the
exact energies and widths, and is applied easily to the 3α
system by slightly modifying the present framework. The
detailed framework is skipped here and referred to ref. [28].
In the present study, we investigated the energy of the 0+2
state with the complex-scaling method. It was found that
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Fig. 7. Momentum distribution of the α particle, (a) ρ(k) and
(b) k2×ρ(k), for the 0+

1 (solid line) and 0+
2 (dotted line) states.

a resonant state, corresponding to the 0+2 state, appears
at E3α = 0.85 MeV with a width less than the numer-
ical uncertainty (∼ 100 keV in the present calculation).
The results confirm that the bound-state approximation
is good to describe the 0+2 resonant state.

It is interesting to compare our results with those given
by Matsumura et al. [17], who used the normalized spec-
troscopic amplitude to obtain the bosonic quantities such
as the single-α orbits and occupation probabilities for the
0+2 state in place of the 3α boson wave function. According
to their results, the occupation probability of the S1 orbit
(0S orbit in ref. [17]) for the 0+2 state is about 70%, the
value of which is quite similar to ours in table 2. However,
the radial behavior of the S1 orbit for the 0

+
2 state as well

as the one of the 0+1 state given by Matsumura et al. are
quite different from our results, and seem unnatural. For
example, the S1 orbit for the 0

+
2 state has as much as 6–

8 nodes and shows a behavior similar to that for the 0+1
state, in spite of the fact that the 0+2 state has a dilute 3α
condensate structure (see fig. 6 in ref. [17]). In addition,
the G orbit for 0+1 state has a prominent peak at r ∼ 13
fm, although the state has a shell-model–like compact
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structure. Also the radial behavior of the single-α orbits
given in ref. [17] is hard to understand. This may be due to
the fact that those authors used the normalized spectro-
scopic amplitude in place of the 3α boson wave function.

3.2 2+

1 and 2+

2 states

The 2+1 state at E
exp
3α = −2.83 MeV (Ex = 4.44 MeV) be-

longs to the rotational band of the ground state starting
from the 0+1 state at E

exp
3α = −7.27 MeV. The calculated

energy and nuclear radius for 2+1 in the present study are
shown in table 1: E3α = −5.28 MeV and 2.45 fm, respec-
tively. The nuclear radius is almost the same as the one
for the ground state, although the calculated excitation
energy is underestimated in comparison with the exper-
imental one, in line with what is discussed in other pa-
pers with the microscopic or semi-microscopic 3α cluster
model [4,18–20,23].
The occupation probabilities of the single-α orbits for

2+1 are demonstrated in table 2. The occupation numbers
are concentrated to the first D1 and G1 orbits with about
50%. Comparing with those for the 0+1 state, we notice the
smallness of the occupation number for the S1 orbit. This
feature can be understood from the fact that the 2+1 state
is of the SU(3)[f ](λµ)J = [444](04)2+ type with Q = 8.
The SU(3) state is described as

|[444](04)〉2+ =
√
0.07111|1d2S〉+

√
0.07111|2s1D〉

−
√
0.43900|1d1D〉 −

√
0.00735|0g1D〉

−
√
0.00735|1d0G〉+

√
0.40408|0g0G〉. (40)

From the definition of the one-body density matrix in
eq. (20), the occupation probabilities for the SU(3) state
in eq. (40) are given as 0.07111 for the S orbit, 0.07111 +
0.43900+0.00735 = 0.51746 for theD orbit, and 0.00735+
0.40408 = 0.41143 for the G orbit. Reflecting the charac-
ter of the SU(3) structure, the occupation probability for
the S1 orbit in table 2 is as small as 8.5%. The radial
behavior of the single-α orbits, S1, D1 and G1 ones, is
shown in fig. 8(a). They are similar to those for the 0+1
state shown in fig. 4(a).
The structure study of 12C based on the 3α-

condensate–type wave function [15] indicated that the
2+2 state at Eexp

3α = 2.6 ± 0.3 MeV with the width of
Γ = 1.0 ± 0.3 MeV [14] has a structure similar to the
0+2 state at E3α = 0.38 MeV with the dilute 3α con-
densation [15]. The conclusion stems from the result that
the 2+2 state has a large overlap with the single conden-
sate wave function of a 3α gas-like structure, the squared
value of which amounts to about 88%. Thus, it is interest-
ing to study the structure of the 2+2 state in the present
framework. Since the 2+2 state is a resonant state with
non-negligible width, a continuum treatment is requested
to estimate exactly the resonant energy and width.
In order to study the resonant properties of the 2+2

state, we take the complex-scaling method [28], which can
be applied easily to the present 3α system by slightly
modifying the framework given in sect. 2. The method
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Fig. 8. Radial parts of the single-α orbits, (a) S1 (solid line),
D1 (dashed line) and G1 (dotted line), in the 2+

1 state, and
(b) the D1 (solid line) orbit in the 2+

2 state. Note that all the
radial parts in the two panels are multiplied by r.

is powerful to evaluate not only the resonant energy and
width but also the nuclear radius. The details are again
skipped here and we refer to ref. [28]. The calculated re-
sults are as follows: 1) the 2+2 resonant state is located
at E3α = 2.3 MeV with Γ = 1.0 MeV, which is in good
agreement with the experimental data [14], and 2) the cal-
culated nuclear radius is 4.3 fm, almost the same as that of
the 0+2 state. Thus, the 2

+
2 state has a dilute 3α structure.

It is interesting to study the single-α orbits and oc-
cupation probabilities in the 2+2 state. For this purpose,
we need to have the wave function of the 2+2 state. Since
the calculated width is not so large in comparison with the
resonance energy, the bound-state approximation is rather
good to describe the resonant wave function. The bound-
state approximation of the wave function is obtained
within the framework of sect. 2, although the wave func-
tion gives a large nuclear radius, about 6 fm (see table 1).
Table 2 illustrates the occupation probabilities of the
single-α orbits (S,D andG waves) for the 2+2 state. We see
that the occupation probability concentrates on only one
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orbit, the D1 orbit, with occupancy as large as 83%, and
the radial behavior of the orbit is likely to be of theD-wave
Gaussian-function–type with a long tail (see fig. 8(b)), re-
flecting a dilute structure. These characteristics are quite
similar to those for the 0+2 state. Thus, we conclude that
the 2+2 state belongs to the 3α condensate structure.
According to the results in ref. [15], it was found that

the 2+2 state has a dominant S-wave between 2α parti-
cles and a D-wave between the center of mass of the 2α
particles and the third α,

Φ(2+2 ) ∼ |u`=0(r2α)UL=2(rα-2α)〉. (41)

This interpretation is consistent with the present result.
The reason is as the follows. From the definition of the
single-α density matrix in eq. (20), the single-α density of
the 2+2 state is presented as

ρ(r, r′) = 3×〈Φ(2+2 )|δ(r
(cm)
1 − r′)〉〈δ(r(cm)1 − r)|Φ(2+2 )〉,

(42)

∼ 3×N2α × UL=2(r)UL=2
∗(r′), (43)

where N2α =
∫

dr2αu0
∗(r2α)u0(r2α) ∼ 1. Thus, the 2+2 -

state wave function, eq. (41), has a dominant occupation
probability of the D orbit, UL=2. The results are in good
agreement with the present study.

3.3 3−1 state

The 3− state at Eexp
3α = 2.37 MeV is an interesting one

from the point of view of the dilute α condensation. If the
state is a condensate with all of the 3α particles in the P
orbit, there is the possibility of a superfuid with vortex
lines, similar to the rotating dilute atomic condensate at
very low temperature [7]. Thus, it is an intriguing problem
to study the structure in the present framework.
The calculated energy of the 3− state is in good

agreement with the experimental data (see table 1). The
very small width (Γ exp = 3.4 keV) [27] indicates that
the bound-state approximation is very good to describe
the state. In fact, we checked it theoretically with the
complex-scaling method, and found that the calculated
resonant energy (width) is almost the same as the one with
the bound-state approximation (less than 100 keV, which
is the numerical uncertainty in the present calculation).
Thus, we use the 3− wave function under the bound-state
approximation to study the characteristics of the state.
The calculated nuclear radius for the 3− state is

2.95 fm, the value of which is larger than that for the
ground state (0+1 ), while it is smaller than that for the
0+2 state (see table 1). This suggests that the structure of
the 3− state is intermediate between the shell-model–like
compact structure (0+1 ) and the dilute 3α structure (0

+
2 ).

The occupation probabilities of the single-α orbits for the
3− state are shown in table 3: 44.7% for the P1 orbit and
27.9% for the F1 orbit. Although the concentration of the
single orbit P1 amounts to about 50%, the radial behavior
of the single-α orbit in fig. 9 has two nodes in the inner

Table 3. Occupation numbers of the k-th α orbits with P and
F waves for the 3− and 1− states of 12C obtained by diago-
nalizing the one-body density matrix in eq. (20). The values in
parenthesis denote the occupation probabilities.

Jπ k P F

3−1 1 1.34 (44.7%) 0.84 (27.9%)

2 0.12 (4.0%) 0.23 (7.5%)

3 0.06 (1.9%) 0.02 (0.8%)

· · · · · · · · ·

total 1.54 (51.4%) 1.09 (36.4%)

1−1 1 1.06 (35.3%) 0.47 (15.8%)

2 0.53 (17.8%) 0.26 (8.6%)

3 0.08 (2.6%) 0.08 (2.6%)

· · · · · · · · ·

total 1.75 (58.5%) 0.84 (28.1%)
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Fig. 9. Radial parts of the single-α orbits, P1 (solid line) and
F1 (dotted line), in the 3−1 state. Note that all the radial parts
in the figure are multiplied by r.

region. However, the amplitude of the inner oscillations
is significantly smaller than that for the ground state in
fig. 3(a). The small oscillations indicate the weak Pauli-
blocking effect, and thus, we can see the precursor of the
3α condensate state, although the 3− state is not an ideal
rotating dilute 3α condensate.

3.4 1−1 state

The experimental width of the 1−1 state at Eexp
3α =

3.57 MeV is as small as Γ = 315 keV [27]. This means
that the bound-state approximation is good to describe
the state. In fact, the calculated energy of the 1−1 state
under the bound-state approximation is E3α = 3.11 MeV,
which is quite similar to that with the complex-scaling
method (E3α = 3.1 MeV and Γ = 0.1 MeV) and in good
agreement with the experimental value.
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Fig. 10. Radial parts of the single-α orbits, P1 (solid line) and
F1 (dotted line), in the 1−1 state. Note that all the radial parts
in the figure are multiplied by r.

The calculated nuclear radius, 3.32 fm, is larger than
that of the ground state (2.44 fm) and the 3−1 state
(2.95 fm) but is smaller than that of the 0+2 one (4.3 fm).
The occupation probabilities of the α particles in the 1−1
state are shown in table 3: 35% for the P1 orbit and 16%
for the F1 orbit. Thus, there is no concentration of the oc-
cupation probability to a single orbit like the 0+2 and 2

+
2

states. Since the α particles in the 1−1 state are distributed
over in several orbits, the state is not of the dilute α con-
densate type. Figure 10 shows the radial behavior of the
P1 and F1 orbits in the 1

−
1 state. The P1 orbit has two

nodes in the inner region, the behavior of which is rather
similar to the 2P harmonic-oscillator wave function. How-
ever, the F1 orbit has a F -wave Gaussian-type behavior.
(Exactly speaking, the orbit has one node at the vicinity
of the origin, which cannot be seen in fig. 10.) Also we see
the oscillatory behavior of the F1 orbit for 0 < r < 2 fm,
similar to the one of the S1 orbit in the 0

+
2 state in fig. 4(b).

These interesting behaviors of the F1 orbit indicate some
signal of the dilute α condensation, reflecting the relatively
large nuclear radius (3.32 fm) for the 1−1 state.

3.5 Structure change of the 0+ state with nuclear
radius

In sect. 3.1, we found that the 0+2 state has a dilute 3α
structure characterized by the nuclear radius as large as
about 4.3 fm, in which the α particle occupies the single
orbit (S1) with about 70% probability, and the radial be-
havior of the S1 orbit is similar to the S-wave Gaussian
wave function with a very long tail. On the other hand, the
0+1 state has a compact structure with a nuclear radius of
2.44 fm, where the occupation probabilities of the α par-
ticles spread out over the S, D and G orbits, amounting
to about 30%, each. The feature is much in contrast with
that of the 0+2 state. The nuclear radius or density of

12C
seems to have a close relation with making the compact
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Fig. 11. Dependence of the energy of the 12C(0+) state, mea-
sured from the 3α threshold, on its nuclear radius.
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Fig. 12. Dependence of the occupation probabilities of the
single-α orbits (S1, D1 and D1 orbits) in the 12C(0+) state
on its nuclear radius. The solid (dotted and dot-dashed) line
corresponds to the S1 orbit (D1 and G1 orbits, respectively).

structure and the dilute 3α structure in the 12C 0+ state.
Thus, it is very interesting to see the structure change
of the 0+ state of 12C by taking the nuclear radius (or
density) as parameter.

The dependence of the occupation probabilities and ra-
dial behaviors of the single α-particle orbits in the 0+ state
on its nuclear radius is investigated with the use of the
simple framework given in the latter part of sect. 2.2 (see
eqs. (36), (37) and (38)). According to the results of the 3α
OCM calculation (see sect. 3.1), the ground state (0+1 ) and
second 0+2 states of

12C have the equilateral-triangle con-
figuration of the 3α clusters. In addition, it is found that
the single angular-momentum channel calculation with
c = (`L)J = (00)0 gives a good approximation to the
results of the full coupled-channel calculation. Thus, only
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Fig. 13. Radial behaviors of the S1 orbit in the 12C(0+) state with (a) RN = 2.42 fm, (b) RN = 2.70 fm, (c) RN = 3.11 fm,
and (d) RN = 4.84 fm, where RN denotes the nuclear radius of the 12C(0+) state.

the single angular-momentum channel c = (`L)J = (00)0
is taken in the present calculation, and the equilateral-
triangle configuration is assumed for the Pauli-principle–
respecting 3α OCM basis wave function (eq. (37)). The
latter can be realized easily by putting the condition ν = µ
in eq. (37). We have checked it by calculating the rms radii
√

〈r2αα〉 and
√

〈r2α-2α〉 defined in eqs. (15) and (16).
Figure 11 shows the dependence of the energy of 12C

measured from the 3α threshold on the nuclear radius RN ,
2.20 fm ≤ RN ≤ 4.86 fm, corresponding to a nuclear den-
sity 0.15 ≤ ρ/ρ0 ≤ 1.6 (ρ0 denotes the normal density).
The energy minimum point appears around RN ∼ 2.4 fm,
corresponding to the normal density region. We see the
strong repulsion in the region of RN < 2.2 fm, due to the
kinetic-energy effect and Pauli-blocking effect, while the
almost flat region appears at RN > 4 fm and the energy
is positive and small, less than 1 MeV with respect to the
3α threshold.

The occupation probabilities of the single-α orbits (S1,
D1, and G1 orbits) are shown in fig. 12 with respect to

the nuclear radius, where Lk denotes the k-th orbit for
the L-wave. In the region of RN = 2.2–2.4 fm (normal
density region), the occupation probabilities of the α par-
ticles spread out over the S, D and G orbits, amounting
to about 30% each. This feature is almost the same as
that of the 0+1 state obtained by the 3α OCM calcula-
tion, the nuclear radius of which is 2.43 fm (see sect. 3.1).
Figure 13 shows the radial behavior of the single-α orbit,
S1, with respect to the nuclear radius. The S1 orbit at
RN ∼ 2.42 fm (fig. 13(a)) has two nodes and the radial
behavior is of the 2S harmonic-oscillator wave function
(howf) type, the result of which is almost the same as
that of the 0+1 state obtained by the 3α OCM calculation
(see fig. 4(a)). Thus, the wave function with RN ∼ 2.4 fm
has the SU(3)[f ](λν) = [444](04) character (see eq. (39)).

Increasing the nuclear radius from RN = 2.42 fm, the
occupation probability of the single-α orbits concentrates
gradually on a single orbit (S1), and it amounts to be
about 90% at RN = 4.84 fm (ρ/ρ0 = 0.14) in the present
calculation (see fig. 12). The radial behaviors of the S1
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orbit with RN = 2.42, 2.70, 3.11 and 4.84 fm are demon-
strated in figs. 13(a), (b), (c) and (d), respectively. We
can see that increasing the nuclear radius, the internal os-
cillation observed in the S1 orbit with RN = 2.42 fm is
gradually disappearing and, finally, the 2S-type radial be-
havior transits to the zero-node long-ranged S-wave type
(Gaussian) with the occupation probability of about 90%,
approaching an ideal dilute α condensate. The reason why
only the S-wave survives in the case of increasing the nu-
clear radius is due to the fact that the centrifugal barrier
is not at work for the S-wave α orbit. The S-wave α parti-
cles, thus, can move in a nucleus with a given large nuclear
radius, although they are confined by the Coulomb po-
tential barrier produced self-consistently [12]. According
to the results of the 3α OCM calculation (see sect. 3.1),
the α particle in the 0+2 state (RN = 4.3 fm) is occupied
in the single orbit (S1) with about 70% probability, the
radial behavior of which is similar to the S-wave Gaus-
sian wave function with a very long tail. These results are
consistent with those in figs. 12 and 13.

4 Summary

In this work we have investigated the bosonic properties
such as single-α particle orbits and occupation numbers
in the Jπ = 0+, 2+, 1−, and 3− states of 12C around the
3α threshold within the framework of the 3α OCM (or-
thogonality condition model). The 3α OCM equation is
based on the equation of motion for the Nα bosons de-
rived from the microscopic Nα cluster model theory. The
experimental energy spectra for 0+1 , 0

+
2 , 2

+
2 , 1

−
1 , and 3

−
1

are reproduced well with the 3α OCM.
The main results to be emphasized here are as follows.
1) The 0+2 state at E

exp
3α = 0.38 MeV has a dilute 3α

structure characterized by the nuclear radius as large as
about 4.3 fm. The analysis of the single-α orbits and oc-
cupation probabilities for the dilute state shows that the
α particle is occupied in a single orbit (S1) with about
70% probability, and the radial behavior of the S1 orbit is
similar to the S-wave Gaussian wave function with a very
long tail. The momentum distribution of the α particle
illustrates the δ-function–like behavior, similar to the mo-
mentum distribution of dilute neutral atomic condensate
states at very low temperature, a feature which eventu-
ally can be measured experimentally. These results give
more theoretical evidence that the 0+2 state is a dilute
3α condensate. On the other hand, the 0+1 state has a
compact structure with a nuclear radius of 2.44 fm. The
occupation probabilities of the α particles spread out over
the S, D and G orbits, amounting to about 30%, each,
the results of which comes from the fact that the 0+1
state is characterized by the nuclear SU(3) wave func-
tion, [f ](λµ) = [444](04). The feature is much in contrast
with that of the 0+2 state.
2) In order to understand further the characteristic

structure of the two 0+ states, we have studied the single-α
orbital behavior in the 12C(0+) state by taking the nuclear
radius RN (or density ρ/ρ0) as parameter, 2.42 ≤ RN ≤

4.84 fm (0.15 ≤ ρ/ρ0 ≤ 1.2), where ρ0 denotes the normal
density). We found that the single-α orbits in the 12C(0+)
state are smoothly changed with the nuclear radius RN ,
and their behavior is classified into the following three
types, depending on the value of RN : i) at RN ∼ 2.4 fm
(ρ/ρ0 ∼ 1), we have two-nodal S orbit (2S), one-nodal D
orbit (1D) and zero-nodal G orbit (0G) with about 30%
occupation probability, each, characterized by a nuclear
SU(3) wave function, ii) increasing the nuclear radius from
RN ∼ 2.4 fm, the occupation probability of the single-
α orbits concentrates gradually on a single S orbit, in
which the two-nodal behavior is disappearing, and then,
iii) at RN ∼ 4 fm (ρ/ρ0 ∼ 0.2), there appears a dominant
zero-nodal Gaussian (0S-type) orbit with a very long tail,
the radial behavior of which is similar to that of the 0+2
state in 12C as mentioned above. The structure change is
caused mainly by the Pauli-blocking effect, the strength
of which depends dominantly on the nuclear radius RN in
the present framework.

3) The structure of the 2+2 state at Eexp
3α = 2.6 ±

0.3 MeV with Γ = 1.0 ± 0.3 MeV was studied with
the present 3α OCM and the complex-scaling method.
We found that the 2+2 resonant state appears at E3α =
2.3 MeV with Γ = 1.0 MeV, in agreement with the exper-
imental data, and the calculated nuclear radius is 4.3 fm,
similar to that of the 0+2 state. The 2

+
2 wave function ob-

tained with the 3α OCM was used to study the bosonic
properties of the state. It was found that the occupation
probability of the α particle concentrates only on the D1

orbit, amounting to be as large as about 80%, and the
radial behavior is of the D-wave Gaussian type with a
long tail. The characteristics of the boson properties in
2+2 is quite similar to those in 0

+
2 at E

exp
3α = 0.38 MeV.

Thus, the 2+2 state has an excited dilute-3α-condensate–
like structure. On the other hand, the 2+1 state has a com-
pact structure with the nuclear radius, 2.44 fm, like the
ground state. The occupation probabilities of the α parti-
cles spread out over the D and G orbits, amounting to
about 56% and 33%, respectively, reflecting the SU(3)
character of the 2+1 state.

4) We investigated the α bosonic properties of the neg-
ative parity states, 1−1 at E

exp
3α = 3.57 MeV and 3−1 at

Eexp
3α = 2.37 MeV. Their nuclear radii are 3.32 and 2.95 fm,
respectively, which are larger than that of the ground state
(0+1 ) but smaller than that of 0

+
2 . The calculated occupa-

tion probabilities of the α particles in those states show
that there is no concentration on a single-α orbit like in the
0+2 and 2

+
2 states. The results indicates that the 1

− and
3−1 states are not of the dilute 3α condensate. The radial
behavior of the P - and F -wave single-α orbits, however,
suggests that small components of the 3α condensation
exist even in the negative-parity states, which is reflected
by their relatively large nuclear radii.

We acknowledge helpful discussions with H. Horiuchi, K. Ikeda,
G. Röpke, A. Tohsaki, Y. Suzuki, and Y. Funaki.
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